

General Certificate of Education Advanced Level Examination
June 2013

Mathematics

Unit Pure Core 4

Monday 10 June 20139.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) (i) Express $\frac{5-8 x}{(2+x)(1-3 x)}$ in the form $\frac{A}{2+x}+\frac{B}{1-3 x}$, where A and B are integers.
(ii) Hence show that $\int_{-1}^{0} \frac{5-8 x}{(2+x)(1-3 x)} \mathrm{d} x=p \ln 2$, where p is rational.
(b) (i) Given that $\frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}}$ can be written as $C+\frac{5-8 x}{2-5 x-3 x^{2}}$, find the value of C.
(ii) Hence find the exact value of the area of the region bounded by the curve
$y=\frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}}$, the x-axis and the lines $x=-1$ and $x=0$.
You may assume that $y>0$ when $-1 \leqslant x \leqslant 0$.

2 The acute angles α and β are given by $\tan \alpha=\frac{2}{\sqrt{5}}$ and $\tan \beta=\frac{1}{2}$.
(a) (i) Show that $\sin \alpha=\frac{2}{3}$, and find the exact value of $\cos \alpha$.
(ii) Hence find the exact value of $\sin 2 \alpha$.
(b) Show that the exact value of $\cos (\alpha-\beta)$ can be expressed as $\frac{2}{15}(k+\sqrt{5})$, where k is an integer.

3 (a) Find the binomial expansion of $(1+6 x)^{-\frac{1}{3}}$ up to and including the term in x^{2}.
(2 marks)
(b) (i) Find the binomial expansion of $(27+6 x)^{-\frac{1}{3}}$ up to and including the term in x^{2}, simplifying the coefficients.
(3 marks)
(ii) Given that $\sqrt[3]{\frac{2}{7}}=\frac{2}{\sqrt[3]{28}}$, use your binomial expansion from part (b)(i) to obtain an approximation to $\sqrt[3]{\frac{2}{7}}$, giving your answer to six decimal places.

4 A curve is defined by the parametric equations $x=8 \mathrm{e}^{-2 t}-4, y=2 \mathrm{e}^{2 t}+4$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) The point P, where $t=\ln 2$, lies on the curve.
(i) Find the gradient of the curve at P.
(ii) Find the coordinates of P.
(iii) The normal at P crosses the x-axis at the point Q. Find the coordinates of Q.
(3 marks)
(c) Find the Cartesian equation of the curve in the form $x y+4 y-4 x=k$, where k is an integer.
(3 marks)

5 The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=4 x^{3}-11 x-3$.
(a) Use the Factor Theorem to show that $(2 x+3)$ is a factor of $\mathrm{f}(x)$.
(b) Write $\mathrm{f}(x)$ in the form $(2 x+3)\left(a x^{2}+b x+c\right)$, where a, b and c are integers.
(c) (i) Show that the equation $2 \cos 2 \theta \sin \theta+9 \sin \theta+3=0$ can be written as $4 x^{3}-11 x-3=0$, where $x=\sin \theta$.
(ii) Hence find all solutions of the equation $2 \cos 2 \theta \sin \theta+9 \sin \theta+3=0$ in the interval $0^{\circ}<\theta<360^{\circ}$, giving your solutions to the nearest degree.
(4 marks)

The points A, B and C have coordinates $(3,-2,4),(1,-5,6)$ and $(-4,5,-1)$ respectively.
The line l passes through A and has equation $\mathbf{r}=\left[\begin{array}{r}3 \\ -2 \\ 4\end{array}\right]+\lambda\left[\begin{array}{r}7 \\ -7 \\ 5\end{array}\right]$.
(a) Show that the point C lies on the line l.
(b) Find a vector equation of the line that passes through points A and B.
(c) The point D lies on the line through A and B such that the angle $C D A$ is a right angle. Find the coordinates of D.
(d) The point E lies on the line through A and B such that the area of triangle $A C E$ is three times the area of triangle $A C D$.

Find the coordinates of the two possible positions of E.

7 The height of the tide in a certain harbour is h metres at time t hours. Successive high tides occur every 12 hours.

The rate of change of the height of the tide can be modelled by a function of the form $a \cos (k t)$, where a and k are constants. The largest value of this rate of change is 1.3 metres per hour.

Write down a differential equation in the variables h and t. State the values of the constants a and k.

8 (a) Find $\int t \cos \left(\frac{\pi}{4} t\right) \mathrm{d} t$.
(4 marks)
(b) The platform of a theme park ride oscillates vertically. For the first 75 seconds of the ride,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{t \cos \left(\frac{\pi}{4} t\right)}{32 x}
$$

where x metres is the height of the platform above the ground after time t seconds. At $t=0$, the height of the platform above the ground is 4 metres.

Find the height of the platform after 45 seconds, giving your answer to the nearest centimetre.

